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Abstract

Ethereum is the largest public blockchain by usage.
It applies an account-based model, which is inferior
to Bitcoin’s unspent transaction output model from a
privacy perspective. Due to its privacy shortcomings,
recently several privacy-enhancing overlays have been
deployed on Ethereum, such as non-custodial, trustless
coin mixers and confidential transactions.
In our privacy analysis of Ethereum’s account-based
model, we describe several patterns that character-
ize only a limited set of users and successfully ap-
ply these “quasi-identifiers” in address deanonymiza-
tion tasks. Using Ethereum Name Service identifiers
as ground truth information, we quantitatively com-
pare algorithms in recent branch of machine learning,
the so-called graph representation learning, as well as
time-of-day activity and transaction fee based user pro-
filing techniques. As an application, we rigorously as-
sess the privacy guarantees of the Tornado Cash coin
mixer by discovering strong heuristics to link the mix-
ing parties. To the best of our knowledge, we are the
first to propose and implement Ethereum user profiling
techniques based on quasi-identifiers.
Finally, we describe a malicious value-fingerprinting at-
tack, a variant of the Danaan-gift attack, applicable for
the confidential transaction overlays on Ethereum. By
incorporating user activity statistics from our data set,
we estimate the success probability of such an attack.

1 Introduction

The narrative around cryptocurrency privacy provisions has
dramatically changed since the inception of Bitcoin [38]. Ini-
tially many, especially criminals, thought Bitcoin and other
cryptocurrencies provide privacy to hide their illicit busi-
ness activities [15]. The first extensive study about Bit-
coin’s privacy provisions was done by Meiklejohn et al [35],
in which they provide several powerful heuristics allowing

∗Support from the project 2018-1.2.1-NKP-00008: Exploring the
Mathematical Foundations of Artificial Intelligence of the Hungarian
Government.

one to cluster Bitcoin addresses. The revelation of Bit-
coin’s privacy shortcomings spurred the creation and im-
plementation of many privacy-enhancing overlays for Bit-
coin [60, 10, 51, 69]. As of today, several Bitcoin wallets, e.g.
Wasabi and Samourai wallets, provide privacy-enhancing so-
lutions to their users.

Previous work has focused on assessing the privacy guar-
antees provided by several UTXO-based (unspent transac-
tion output) cryptocurrencies, such as Bitcoin [3, 35], Mon-
ero [14, 37, 8] or Zcash [6, 7, 8, 27, 58].

However, perhaps surprisingly, until today there were no
similar empirical studies on account-based cryptocurrency
privacy provisions. Therefore in this work, we put forth the
problem of studying the privacy guarantees of Ethereum’s
account-based model. Assessing and understanding the pri-
vacy guarantees of cryptocurrencies is essential as the lack
of financial privacy is detrimental to most cryptocurrency
use cases. Furthermore, there are state-sponsored compa-
nies and other entities, e.g. Chainalysis [42], performing
large-scale deanonymization tasks on cryptocurrency users.

In contrast to the UTXO-model, many cryptocurrencies
that provide smart contract functionalities operate with ac-
counts. In an account-based cryptocurrency, users store
their assets in accounts rather than in UTXOs. Already
in the Bitcoin white paper, Nakamoto suggested that “a
new key pair should be used for each transaction to keep
them from being linked to a common owner” [38]. Despite
this suggestion, account-based cryptocurrency users tend to
use only a handful of addresses for their activities. In an
account-based cryptocurrency, native transactions can only
move funds between a single sender and a single receiver,
hence in a payment transaction, the change remains at the
sender account. Thus, a subsequent transaction necessarily
uses the same address again to spend the remaining change
amount. Therefore, the account-based model essentially re-
lies on address-reuse on the protocol level. This behavior
practically renders the account-based cryptocurrencies infe-
rior to UTXO-based currencies from a privacy perspective.

Previously, several works had identified the privacy
shortcomings of the account-based model, specifically in
Ethereum. Those works had proposed trustless coin mix-
ers [34, 53, 55] and confidential transactions [66, 11, 13].
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However, until recently, none of these schemes has been
deployed on Ethereum. Even today, Ethereum’s privacy-
enhancing overlays are still in a nascent, immature phase
especially in comparison with Bitcoin’s well-established coin
mixer scene [10, 60, 69, 26, 51].

Our contributions:

• We identify and apply several quasi-identifiers stem-
ming from address reuse (time-of-day activity, trans-
action fee, transaction graph), which allow us to profile
and deanonymize Ethereum users.

• In the cryptocurrency domain, we are the first to quan-
titatively assess the performance of a recent area of ma-
chine learning in graphs, the so-called node embedding
algorithms.

• We establish several heuristics to decrease the privacy
guarantees of non-custodial mixers on Ethereum.

• We describe a version of the malicious value fingerprint-
ing attack, also known as Danaan-gift attack [7], appli-
cable in Ethereum.

• We collect and analyze a wide source of Etherum re-
lated data, including Ethereum name service (ENS),
Etherscan blockchain explorer, Tornado Cash mixer
contracts, and Twitter. We release the collected data
as well as our source code for further research1.

The rest of the paper is organized as follows. In Section 2,
we review related work. In Section 3, a brief background is
given on the inner workings of Ethereum along with the gen-
eral idea behind node embedding. In Section 4, we describe
our collected data. In Section 5, we overview the litera-
ture on evaluating deanonymization methods and propose
our metrics. Our main methods to pair Ethereum addresses
that belong to the same user and link Tornado deposits and
withdrawals are detailed in Section 6 and 7. A variant of
the Danaan-gift attack is described in Section 8. Finally, we
conclude our paper in Section 10.

2 Related Work

First results on Ethereum deanonymization [30] attempted
to directly apply both on-chain and peer-to-peer (P2P) Bit-
coin deanonymization techniques. The starting point of
our work is the recognition that common deanonymization
methods for Bitcoin are not applicable to Ethereum due
to differences in Ethereum’s P2P stack and account-based
model.

The relevant body of more recent literature takes two dif-
ferent approaches. The first analyzes Ethereum smart con-
tracts with unsupervised clustering techniques [43]. Kiffer
et al. [28] assert a large degree of code reuse which might be
problematic in case of vulnerable and buggy contracts.

1https://github.com/ferencberes/ethereum-privacy
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Figure 1: Schematic depiction of non-custodial mixers on
Ethereum

The second branch of literature assesses Ethereum ad-
dresses. A crude and initial analysis had been made by
Payette et al., who clusters the Ethereum address space into
only four different groups [45]. More interestingly Friedhelm
Victor proposes address clustering techniques based on par-
ticipation in certain airdrops and ICOs [61]. These tech-
niques are indeed powerful, however, they do not generalize
well as it assumes participation in certain on-chain events.
Our techniques are more general and are applicable to all
Ethereum addresses. Victor et al. gave a comprehensive
measurement study of Ethereum’s ERC-20 token networks,
which further facilitates the deanonymization of ERC-20 to-
ken holders [62].

A completely different and unique approach is taken
by [32], which uses stylometry to deanonymize smart con-
tract authors and their respective accounts. The work had
been used to identify scams on Ethereum.

3 Background

In this section we provide some background on cryptocur-
rency privacy-enhancing technologies as well as node em-
bedding algorithms. Elementary preliminaries on Ethereum
and its applied gas mechanism are included in Appendix A.

3.1 Non-custodial mixers

Coin mixing is a prevalent technique to enhance transaction
privacy of cryptocurrency users. Coin mixers may be cus-
todial or non-custodial. In case of custodial mixing, users
send their “tainted” coins to a trusted party, who in return
sends back “clean” coins after some timeout. This solution
is not satisfactory as the user does not retain ownership of
her coins during the course of mixing. Hence, the trusted
mixing party might just steal funds, as it already happened
with custodial mixers [35].

Motivated by these drawbacks, recently several non-
custodial mixers have been proposed in the literature [34,
65, 53, 55]. The recurring theme of non-custodial mixers is
to replace the trusted mixing party with a publicly verifiable
transparent smart contract or with secure multi-party com-
putation (MPC). Non-custodial mixing is a two-step proce-
dure. First, users deposit equal amounts of ether or other
tokens into a mixer contract from an address A, see Fig-
ure 1. After some user-defined time interval, they can with-
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draw their deposited coins with a withdraw transaction to
a fresh address B. In the withdraw transaction, users can
prove to the mixer contract that they deposited without re-
vealing which deposit transaction was issued by them by
using one of several available cryptographic techniques, in-
cluding ring signatures [34], verifiable shuffles [53], threshold
signatures [55], and zkSNARKs [65].

3.2 Ethereum Name Service

Ethereum Name Service (ENS) is a distributed, open,
and extensible naming system based on the Ethereum
blockchain. In spirit it is similar to the well-known Domain
Name Service (DNS). However, in ENS the registry is imple-
mented in Ethereum smart contracts2, hence it is resistant
to DoS attacks and data tampering. Like DNS, ENS oper-
ates on a system of dot-separated hierarchical names called
domains, with the owner of a domain having full control
over subdomains. ENS maps human-readable names like
alice.eth to machine-readable identifiers such as Ethereum
addresses. Therefore, ENS provides a more user-friendly
way of transferring assets on Ethereum, where users can use
ENS names (alice.eth) as recipient addresses instead of
the error-prone hexadecimal Ethereum addresses.

3.3 Node embeddings

Node embedding methods form a class of network represen-
tation learning methods that map graph nodes to vectors
in a low-dimensional vector space. They are designed to
represent vertices with similar neighborhood structure by
vectors that are close in the vector space. Intuitively, ad-
dresses that interact with the same set of addresses in the
Ethereum transaction graph should be close in the embed-
ded space. Perhaps the best methods are Laplacian eigen-
maps [5] and graph factorization [1]. Research in node em-
bedding has recently been catalyzed by Word2Vec [36], an
embedding method for natural language processing. Sev-
eral node embedding methods have been proposed recently
[46, 57, 24, 48] and applied successfully for multi-label clas-
sification and link prediction in a variety of real-world net-
works from diverse domains. In this work, we use these tech-
niques on the Ethereum transaction graph to link addresses
owned by the same user. To the best of our knowledge, we
are the first to apply node embedding for Ethereum user
profiling.

4 Data collection

We collected addresses presumably related to regular users
and not automatic (trader or exchange) bots from the fol-
lowing publicly available data sources. Twitter: By us-
ing the Twitter API3, we were able to collect 890 ENS

2See: https://docs.ens.domains
3Using the Twitter Search and People API endpoints, we collected

tweets containing the following keywords {’@ensdomains’,’.eth’,’ENS
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Figure 2: Fraction of ENS names (collected from Twitter)
that interacted with the given service topics. Popular ser-
vices within the categories are shown in Figure 3.

names included in Twitter profile names or descriptions,
and discover the connected Ethereum addresses, see Fig-
ure 4. Humanity DAO:4A human registry of Ethereum
users, which can include a Twitter handle in addition to
the Ethereum address. Tornado Cash mixer contracts:
We collected all Ethereum addresses that issued or received
transactions from Tornado Cash mixers up to 2020-04-04.
Table 1 shows the total number of addresses collected from
each data source as well as addresses with at least 5 sent
transactions. We note that there are overlaps between the
three address groups, see the last row of Table 1.

By using the Etherscan blockchain explorer API, we col-
lected 1,155,188 transactions sent or received by the ad-
dresses in our collection. The final transaction graph con-
tains 159,339 addresses. The transactions span from 2015-
07-30 until 2020-04-04. Figure 5 shows the average number
of transactions sent and received in the three data sources.
Addresses collected from Twitter and Humanity DAO have

name’,’ENS address’, ’ethereum’, ’#ethereum’} as well as profiles with
an ENS name in their displayed profile name or description. We also
searched for ENS names in the name and description of every tweeter
in our data. Twitter data collection lasted from 2019-11-15 until 2020-
03-05.

4See: https://www.humanitydao.org/humans
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Figure 3: Most popular services within the Defi, Exchange,
Stablecoins and Gaming categories in our data collection.

similar behavior, while Tornado accounts have fewer trans-
actions since Tornado Cash has only recently been launched.

Finally, using the Etherscan Label Word Cloud, we man-
ually collected service category labels (e.g. exchange, gam-
bling, stablecoins) related to popular addresses in our data
set. We summarize the fraction of ENS names in our col-
lection that interacted with the given services in Figure 2.
We observed that the publicly revealed ENS names already
expose sensitive activities such as gambling and adult ser-
vices. Therefore, users should avoid sensitive activities on
addresses easily linkable to their public identities, such as
ENS name or their Twitter handle.

5 Evaluation measures

In this paper, we propose deanonymization methods for pair-
ing Etherum accounts of the same user (Section 6), Tornado
deposits and withdrawals (Section 7), and fingerprinting ac-
counts (Section 8). To establish an appropriate measure for
evaluating our methods, we face the diversity and complex-
ity of estimates of the adversary’s success to breach privacy.
In the literature, the adversary’s output takes the form of a

Source Total At least 5 Used as ground
sent txs truth pairs

Twitter 1364 1260 129
Tornado Cash 2361 1618 ∗189
Humanity-Dao 695 602 n/a
All 4259 3321 318

Table 1: Number of Ethereum addresses collected from three
different sources. ∗Tornado ground truth pairs are only
heuristically identified, see Section 7.1. Due to overlaps be-
tween the data sources, the total number of investigated ad-
dresses is less than the sum of the records in the top three
rows.
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Figure 4: Unique address count of ENS names collected from
Twitter. Most of the ENS names in our collection are linked
to a single Ethereum address, while some entities use multi-
ple accounts. In Section 6, we use ENS names with exactly
two unique addresses (green) to measure the performance
of different profiling techniques.
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Figure 5: Average number of transactions sent or received
by the addresses of each data source. Tornado accounts
have less transactions as the service has only recently been
launched.
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posterior probability distribution, see the survey [63].
The simplest metrics consider the success rate of a

deanonymizing adversary. Metrics such as accuracy, cov-
erage, fraction of correctly identified nodes [4, 41, 39] are
applicable only when the attack has the potential to exactly
identify a significant part of the network.

Exact identification is an overly ambitious goal in our ex-
periments, which aim to use very limited public information
to rank candidate pairs and quantify the leaked information
as risk for a potential systematic deanonymization attack.
For this reason, we quantify non-exact matches, since even
though our deanonymizing tools might not exactly find a
mixing address, they can radically reduce the anonymity
set, which is still harmful to privacy. We want to quantify
the information leaked from network structure, time-of-day
activity, and gas price usage to assess the implications for
the future privacy [40] of the account owners.

In our first two deanonymization experiments, our algo-
rithms will return a ranked list of candidate pairs for each
account in our testing set. Based on the ranked list, we pro-
pose a simple metric, the average rank of the target in the
output.

Recent results consider deanonymization as a classifica-
tion task and use AUC for evaluation [33]. In our experi-
ments, we will compute AUC by the following claim:

Lemma 5.1. Consider a set of accounts a, each with a set
of candidate pairs c(a) such that exactly one in c(a) is the
correct pair of a. Let an algorithm return a ranked list of all
sets c(a). The AUC of this algorithm is equal to the average
of r(a)/|c(a)| over all a, where r(a) is the rank of the correct
pair of a in the output.

Proof. Follows since AUC is the probability that a randomly
selected correct record pair is ranked higher than another
incorrect one [25].

Finally, we consider evaluation by variants of entropy,
which quantify privacy loss by the number of bits of ad-
ditional information needed to identify a node. Defining
entropy is difficult in our case for two reasons. First, our
algorithms provide a ranked list and not a probability distri-
bution. Second, for the Tornado Cash mixer deanonymiza-
tion, the anonymity set size is dynamic, as users can freely
deposit anytime they wish, hence increasing the anonymity
set size.

In the literature, entropy based evaluation considers the
a priori knowledge without a deanonymization method
and the a posteriori knowledge after applying one [54].
Several papers compute the entropy of the a posteriori
knowledge [54, 16, 40], however they assume that the
deanonymizer outputs a probability distribution of the can-
didate records [40].

The information the attacker has learned with the attack
can be expressed as the difference of the a priori and a pos-
teriori entropy. We call this difference the entropy gain,
denoted as gain(n, p) where n and p are the anonymity set
size and probability distribution, respectively. The a priori

entropy of the target record is typically the base-2 loga-
rithm of the a priori anonymity set size. The problem with
varying a priori anonymity set size is that while correctly
selecting ten candidate users from a pool of a million is a
great achievement, the same entropy of log2(10) is achieved
without deanonymization if the initial pool size, for example
in a low-utilization mixer, is only 10. We note that in [16],
the authors also divide the entropy gain to normalize the
value.

Next, we describe a new method to infer the a posteriori
distribution given varying a priori knowledge and appropri-
ately normalize with respect to the a priori entropy. More
precisely, first we give a heuristic argument that the a priori
anonymity set size has little effect on the entropy gain, and
hence we can compare and average across different measure-
ments. In the formula below, given an a priori anonymity
set size 2n vs. n, we compare the entropy gain of the same
distribution p, gain(2n, p)−gain(n, p). In the formula below,
pi denotes the probability p([(i− 1)/(2n), i/(2n)]).

gain(2n, p) = log2(2n) +

2n∑
i=1

pi log2(pi);

gain(n, p) = log2(n) +

n∑
i=1

(p2i−1 + p2i) log2(p2i−1 + p2i).

Since log2(2n) − log2(n) = 1 =
∑

i pi, we may group the
terms to obtain the difference in the entropy gain as the
sum for 1 ≤ i ≤ n of

p2i−1 log2

(
2p2i−1

p2i−1 + p2i

)
+ p2i log2

(
2p2i

p2i−1 + p2i

)
, (1)

which can be bounded from above by using log x < x− 1 as

(p2i−1 − p2i)
2

p2i−1 + p2i
. (2)

If the probability distribution is smooth with little density
changes in a neighborhood, the above value is very small.
For example, the value is small if pi is monotonic in i, which
at least approximately holds in our experiments.

Based on the above argument, we may infer an empir-
ical probability distribution of the candidates ranked
by an algorithm. For each a priori size n and rank r for
the ground truth pair of a target record, we define the dis-
tribution P (n, r) to be uniform in [(r − 1)/n, r/n], and 0
elsewhere, in accordance with formula (1). The empirical
probability distribution of an algorithm will be the average
of P (n, r) over all the output of the algorithm. In the dis-
cussion, we will use the entropy gain of the above empiri-
cal probability distribution to quantify the deanonymization
power of our algorithms.

6 Linking Ethereum accounts of the
same user

In this section, we introduce our approach to identify pairs
of Ethereum accounts that belong to the same user. In our
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Figure 6: Time-of-day distribution of Ethereum transactions

0 1 2 3 4
Normalized gas price

0

50000

100000

Co
un

t

Figure 7: Normalized gas price distribution of Ethereum
transactions. Outliers above 5 are omitted.

measurements, we investigate three quasi-identifiers of the
account owner: the active time of the day, the gas price se-
lection, and the location in the Ethereum transaction graph.

We evaluate our methods by using the set of address
pairs in our collection that belong to the same name in
the Ethereum Name Service (ENS), see Figure 4. We con-
sider 129 ENS names with exactly two Ethereum addresses
to avoid the possible validation bias caused by ENS names
with more than two addresses. We also note that Ethereum
addresses connected to multiple ENS names were excluded
from our experiments.

6.1 Time-of-day transaction activity

Ethereum transaction timestamps reveal the daily activity
patterns of the account owner, see Figure 6. In the top row
of Figure 8, we show time-of-day profiles for two ENS names
that are active in different time zones.

Given the set of timestamps, an account is represented by
the vector including the mean, median and standard devi-
ation, as well as the time-of-day activity histogram divided
into bhour bins.

6.2 Gas price distribution

Ethereum transactions also contain the gas price, which is
usually automatically set by wallet softwares. Users rarely
change this setting manually. Most wallet user interfaces
offer three levels of gas prices, slow, average, and fast where
the fast gas price guarantees almost immediate inclusion in
the blockchain.
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Figure 8: Time-of-day and normalized gas price profiles for
two ENS names with a pair of addresses each. Both the
time-of-day and gas price selection are similar in case of
matmeth.eth addresses (red, green) while the addresses of
kinchase.eth (blue, orange) have different gas price profiles.
Addresses are denoted by different colors.

The changes in daily Ethereum traffic volume sometimes
cause temporary network congestion, which affect user gas
prices. Hence we normalized the gas price by the daily net-
work average. In Figure 7, the two peaks of the normal-
ized gas price around 0.5 and 1 correspond to the slow and
average gas price options. On the other hand, users only
occasionally charge more than three times the daily average
gas price. The combination of these gas price levels forms
the so-called gas price profile for each Ethereum user.

Given the normalized gas prices of the transactions sent,
an account is represented by the vector including the mean,
median and standard deviation, as well as the normalized
gas price histogram divided into bgas bins.

6.3 Transaction graph analysis

The set of addresses used in interactions characterize a user.
Users with multiple accounts might interact with the same
addresses or services from most of them. Furthermore, as
users move funds between their personal addresses, they may
unintentionally reveal their address clusters.

Our deanonymization experiments are conducted on a
transaction graph with nodes as Ethereum addresses and
edges as transactions. From the library5 of Rozenber-
czki et al. [49], we selected twelve node embedding meth-
ods [31, 68, 48, 47, 44, 12, 46, 56, 5, 17, 50] (see Section 3.3)
to discover address pairs that might belong to the same user.
To the best of our knowledge, we are the first to apply node
embedding for Ethereum user profiling.

To apply the selected library [49], certain preprocessing
steps are required. First, we considered transactions as
undirected edges and removed loops and multi-edges. We

5https://github.com/benedekrozemberczki/karateclub
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excluded nodes outside the largest connected component.
Due to running time considerations, we also removed nodes
with degree one. The resulting graph has 16,704 nodes and
132,231 edges. We generated 128-dimensional representa-
tions for the addresses. In order to compare with timestamp
and gas price representations, we assign the overall average
of the network embedding vectors to the removed nodes.

6.4 Evaluation

Based on timestamp, gas price distributions or network em-
bedding, we generate Euclidean feature vectors for 3321
Ethereum addresses with each having at least five trans-
actions sent, see Table 1. Given a target address, we order
the remaining addresses by their Euclidean distance from
the target.

In the evaluation, we use 129 address pairs that belong to
the same ENS name. The accuracy metrics of Section 5 for
identifying accounts of the same user by using only time-of-
day activity or normalized gas price is given in Figures 9–11.
While time-of-day representation works best with bhour =
4 to 6 (six to four hour long bins), normalized gas price
representation performs weaker and the related histogram
gives only very small improvement with bgas = 50 over mean,
median and standard deviation.

The performance of the twelve different node embedding
algorithms is shown in Figures 12–14 based on ten indepen-
dent experiments. The two best performing methods are
Diff2Vec [50] and Role2Vec [2]. Note that these algorithms
capture different aspects of the same graph as Diff2Vec is a
neighbourhood preserving and Role2Vec is a structural node
embedding. We achieved best Ethereum address linking per-
formance by combining these two methods by the harmonic
average of their rank.

In Figure 15, we show the fraction of pairs where the rank
of the ground truth pair is not more than a given value.
Surprisingly, Diff2Vec and Role2Vec find the correspond-
ing ENS address pairs within 100 closest representations by
almost 20% more likely than time-of-day activity and gas
price statistics. Our combination based approach further
improves the performance.

Our results show that the proposed profiling techniques
link Ethereum addresses of the same user significantly bet-
ter than random guessing. More precisely, the combination
of Diff2Vec and Role2Vec yield 1.6 bits of additional infor-
mation on account owners, see Figure 14. In other words,
we can reduce the anonymity set of a particular address by
a factor of 21.6 ≈ 3.0314.

7 Deanonymizing trustless mixing
services on Ethereum

As the Ethereum community realises the consequences of
the lack of privacy on Ethereum, more and more emphasis
is put on increasing transaction privacy [34, 53, 55]. Hence,
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Figure 9: Average rank at different granularity for daily ac-
tivity (top) and normalized gas price (bottom). Dashed
lines show performance with only mean, median and stan-
dard deviation used. Note that the maximum rank is 3321,
the total number of Ethereum addresses considered in this
experiment.
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show performance with only mean, median and standard
deviation used.

7



2 3 4 6 8 12 24
Number of bins (bhour)

0.20

0.25

0.30

0.35

0.40
En

tro
py

 g
ai

n
Granularity of daily activity

Only statistics

2 3 4 5 10 20 50 100
Number of bins (bgas)

0.06

0.08

0.10

0.12

En
tro

py
 g

ai
n

Granularity of normalized gas price
Only statistics

Figure 11: Entropy gain at different granularity for daily ac-
tivity (top) and normalized gas price (bottom). Dashed
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Figure 12: Average rank for node embedding methods. Ver-
tical lines show standard deviation in 10 independent ex-
periments. Reciprocal rank combination of Diff2Vec and
Role2Vec gives the best performance. Note that the maxi-
mum rank is 3321, the total number of Ethereum addresses
considered in this experiment.
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methods.

privacy-enhancing tools became crucially important gadgets
in the Ethereum ecosystem. Without doubt, the most popu-
lar is Tornado Cash (TC), a non-custodial zkSNARK-based
mixer. It allows its users to enhance their anonymity by hid-
ing their identity among a set of participating users. In this
section, we provide techniques and heuristics to decrease the
anonymity achieved in a TC mixer.

The Tornado Cash (TC) Mixers are sets of trustless
Ethereum smart contracts allowing Ethereum users to en-
hance their anonymity. A TC mixer contract holds equal
amounts of funds (ether or other ERC-20 tokens) from a
set of depositors. One mixer contract typically holds one
type of asset. In case of the TC mixer, anonymity is
achieved by applying zkSNARKs [23]. Each depositor in-
serts a hash value in a Merkle-tree. Later, at withdraw time,
each legitimate withdrawer can prove unlinkably with a zero-
knowledge proof that they know the pre-image of a previ-
ously inserted hash leaf in the Merkle-tree. Subsequently,
users can withdraw their asset from the mixer whenever they
consider that the size of the anonymity set is satisfactory.

Cryptocurrency mixers typically provide k-anonymity
(also known as plausible deniability) to their users [52]. Gen-
erally speaking, a k-anonymized dataset has the property
that each record is indistinguishable from at least k−1 oth-
ers. Specifically, if a mixer contract holds n deposits out
of which n − k had already been withdrawn, then the next
withdrawer will be indistinguishable among at least those k
users who have not withdrawn from the mixer yet. Hence
each withdrawer can enhance their transaction privacy and
make their identity indistinguishable among at least k ad-
dresses. We call the set containing the k indistinguishable
addresses the anonymity set of the user.

In Figure 16, we show the changes in the anonymity set
size over time for four TC mixer contracts (0.1 ETH, 1 ETH,
10 ETH, 100 ETH) respectively. Since TC was launched
in December 2019, hundreds of deposits were placed in the
mixers as more and more user interacted with this service.
In general, we observe orders of magnitude lower activity
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Figure 16: The number of total deposits in each TC mixer
over time. This is an upper bound for the achievable
anonymity set size when a withdraw transaction is executed.
The popularity of the 0.1ETH mixer is superior compared
to higher value mixers.

for the 100ETH mixer, thus it does not provide as much
anonymity as mixers with lower values (0.1ETH, 1ETH,
10ETH).

7.1 Heuristics for linking mixer deposits
and withdraws

Unfortunately, careless usage easily reveals links between
deposits and withdraws and also impact the anonymity of
other users, since if a deposit can be linked to a withdraw,
it will no longer belong to the anonymity set. Next, we list
three usage patterns that can be used to link deposits and
withdraws. The simplest careless usage is applying the same
address for deposit and withdraw transactions as well:
Heuristic 1. If there is an address from where a deposit
and also a withdraw has been made, then we consider these
deposits and withdraws linked.

The next heuristic is based on salient gas price settings.
Most wallet softwares, e.g. Metamask or My Ether Wallet,
automatically sets gas prices as multiples of Gwei (109 wei,
i.e. giga wei). However, one can observe gas prices whose
last 9 digits are non-zero, hence those gas prices are likely
set by the transaction issuer manually. These custom-set gas
prices can be used to link deposits and withdraw transac-
tions. For instance, one might observe the deposit transac-
tion6 at block height 9, 418, 956 with 5.130909091 Gwei gas
price. Later on, there is a withdraw transaction7 at block
height 9, 419, 096 in the Ethereum blockchain with exactly
the same custom-set gas price. This deposit and withdraw
pair can be linked.
Heuristic 2. If there is a deposit-withdraw pair with unique
and manually set gas prices, then we consider them as linked.

Frequently, users reveal links between their deposit and
withdraw addresses if they sent transactions from one of
their addresses to another address owned by them. We con-
jecture that users falsely expect that withdraw addresses are
clean, therefore they can send transactions from any address

6Depositor:0x074a3e9451fe3fb47be47786cf2dc4e84e797a6f
7Withdrawer:0x0f2437ff38e032596f2226873038230dcb22c485
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Figure 17: Elapsed time in days between linked deposit and
withdraw transactions for the 0.1 ETH mixer contract. Vast
majority of users do not wait more than one day to withdraw
their deposits.

to their clean withdraw addresses. However, if the with-
draw address can be linked to one of their deposit addresses,
then they effectively lose all privacy guarantee accomplished
by the fresh withdraw address. Express differently, if users
run out of clean funds at their fresh addresses, they might
feel tempted to move ”dirty” assets to their ”clean” ad-
dresses. Again, such a transaction links ”clean” and ”dirty”
addresses which is captured by the following heuristic.
Heuristic 3. Let d be a deposit and w a withdraw address
in a TC mixer. If there is a transaction between d and w
(or vice versa), we consider the addresses linked.

One could easily generalize Heuristic 3 by requiring trans-
actions to be sent from not only a depositor address d, but
rather from any address in the cluster of addresses contain-
ing d. However, we leave the implementation of this gener-
alization for future work.

Applying Heuristics 1–3, we found 218, 110, 60, and 7
withdraws linked in the four mixer contracts (0.1 ETH, 1
ETH, 10 ETH, 100 ETH) respectively up to 2020 April 4th,
see Table 2. We note that withdraws identified by Heuristic
2 can also overlap with other withdraws identified by Heuris-
tic 1 or 3. Hence the number of total linked withdraws are
less than the sum of all withdraws individually identified by
each heuristic.

7.2 Elapsed time between deposits and
withdraws, withdraw address reuse

In Figure 17, we observe that most users of the linked
deposit-withdraw pairs leave their deposit for less than a day
in the mixer contract. This user behavior can be exploited
for deanonymization by assuming that the vast majority of
the deposits are always withdrawn after one or two days.

Even worse, in Figure 19, we observe several addresses re-
ceiving multiple withdrawals from the 0.1 ETH mixer con-
tract. For instance, there are 83 addresses that have with-
drawn 2 times and 27 addresses with 3 withdrawals each.
This phenomenon causes privacy risk not just for the owner
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Figure 18: For each mixer, the number of withdraw-deposit
pairs linked by Heuristics 2–3 such that the deposit is not
later than the day or the week before, or any time in the
past.
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Figure 19: Withdrawal address reuse in the 0.1 ETH mixer
contract. Many users withdraw multiple deposits to the
same address, which eases deanonymization and reduces the
privacy properties of the mixer.

of these addresses but also reduces the privacy properties of
the mixer. Note that proper usage always requires a with-
draw to a fresh address.

7.3 Deanonymization performance

Next we measure how well the techniques of Section 6 iden-
tify the linked withdraw-deposit address pairs. We build
ground truth by using Heuristics 2–3 of Section 7.1. We
omit withdraw-deposit pairs identified by Heuristic 1 from
the ground truth as in that case both withdraw and deposit
addresses are the same. Such a “pair” is trivially identified.
We define three different ground truth sets, one when
the deposit is within the past day of the withdraw, another
when within the past week, and the unfiltered full set, see
Fig. 18. Experiments on the unfiltered full set is labeled past
in Figures 20-23.

Note that our ground truth sets are compiled by using
Heuristics 2–3, and hence are correct up to our best knowl-
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Deanonymized withdraws All
Mixer Heuristic 1 Heuristic 2 Heuristic 3 Total Withdraws
0.1ETH 95 (7.5%) 80 (6.2%) 113 (8.8%) 218 (17.1%) 1272
1ETH 21 (2.5%) 40 (4.8%) 75 (9%) 110 (13.2%) 833
10ETH 8 (1.1%) 9 (1.2%) 46 (6.2%) 60 (8.1%) 738
100ETH 2 (1.5%) 5 (3.8%) 3 (2.3%) 7 (5.3%) 132

Table 2: Number of all withdraws and deanonymized withdraws using the corresponding heuristics in each mixer contract.
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Figure 20: Average rank of the deposit address in the candidate list of our algorithms for the three different ground truth
sets described in Section 7.3.
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Figure 21: Number of withdraw addresses in the 0.1ETH mixer contract such that the corresponding deposit is identified
within the given rank in the candidate list of each deanonymization technique, separate for the three ground truth sets
described in Section 7.3.
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edge on the data. Since in Heuristic 2 we used gas prices and
in Heuristic 3 an edge between the two addresses, in this sec-
tion, we show gas price only as reference, and omit the edges
used by Heuristic 3 for the network analysis algorithms. As
we will see, gas price distribution performs weakly for find-
ing the account pairs identified by the Heuristics despite that
Heuristic 2 is based on gas price, adding the edges between
accounts identified by Heuristic 3 would yield overly strong
deanonymization results since the same information is used
for deanonymization and testing.

Figure 20 shows that an address with withdraw within a
day or week has significantly smaller anonymity set size, on
average, since we only search for the corresponding deposit
in a smaller set. For example, for the 0.1ETH mixer the
original average anonymity set size of 400 could be reduced
to almost 12 by assuming that the deposit occurred within
one day of the withdraw.

We note that in Figure 20 and all other measurements
over the filtered ground truth sets, we do not discount for
the withdraw addresses that are not included in the filtered
set. For example, as seen in Figure 17, for 80 0.1-Ether
withdraw transactions, we list candidate deposits, but for
the remaining 20, we make no deanonymization attempt.
To normalize the results by considering these withdraws,
we have to assume that the corresponding deposit is not
in the 80-element candidate set but in the remaining 320,
thus giving an average rank contribution of 160 for 20% of
the data. Hence average rank for 0.1-Ether withdraws with
deposit within a week have an additional correction of 32
for average rank; by similar calculations, the correction for
transactions within a day is 63.

Daily activity and Diff2Vec have similar performance
while their concatenated feature vectors proved to be the
best address representation; for the smaller ground truth
sets, they identify related deposit addresses within the 20
and 5 closest representations on average. Withdraw linking
performance is further improved by concatenating the two
models. Entropy gain is shown in Figure 22 and the number
of withdraws linked to deposits within a given rank of the
output for the best methods are in Figure 21.

In Figure 23, we show the withdraw linking performance
over time. As the number of active deposits increases, it be-
comes harder to link withdraws to any of the past deposits.
However withdraws that follow the deposit after a few days
are still much easier to deanonymize.

7.4 Maintaining privacy

We believe if users were using the technology in a sound
way or a privacy-focused wallet software would have helped
them and abstracted away potential privacy leaks, then TC
mixers could possibly achieve higher degrees of anonymity.

7.4.1 Randomized mixing intervals

Mixing participants decrease largely their gained anonymity
by withdrawing funds after short time intervals, cf. Fig-

ure 17 and 20. These heuristics can be defeated by random-
ized mixing intervals. Randomized mixing intervals cannot
be enforced by the mixing contract itself, since withdrawals
are unlinkable to the deposits. Therefore, this should be
accomplished by the user wallet software.

7.4.2 Fresh withdraw addresses

Currently, many users apply the same withdraw addresses
across several withdraws, see Figure 19. This greatly de-
creases the complexity of linking deposits and withdraws.
Therefore users must use fresh withdraw addresses for each
of their withdraws. This issue could have been easily fixed
on the user interface level.

7.4.3 Mixer usage and user behaviors

Mixers mainly attempt to break the link between sets of
transaction graphs associated with Ethereum accounts. As
such, users need to ensure that their on-chain behaviors are
unlinkable between uses of the TC mixers. Therefore, to
ensure maximal privacy, users should use the TC mixers
after every transaction. However, this decreases the user
experience and ability to use applications on Ethereum.

8 Danaan-gift attack in Ethereum

The Danaan-gift attack, also known as malicious value fin-
gerprinting, was introduced in [7]. In a value fingerprint-
ing attack, an adversary sends a cryptocurrency transaction
with a crafted amount to add a fingerprint to the receiver’s
account balance. Although value fingerprinting was orig-
inally introduced in the context of Zcash, we notice that
these attacks are applicable to Ethereum as well. Most
wallet software denominates gas prices in multiples of gwei
(109 wei where 1ETH = 1018wei), hence transaction fees
overwhelmingly (in 98, 1%) do not change the last 9 digits
of an account balance. Albeit, users might set transaction
fees manually, potentially changing their own fingerprint (in
1.9%). The last 9 digits of an account balance have no eco-
nomic significance (1 gwei≈ 0.0000003$) but could be used
as a fingerprint by an adversary.

First, we measure the fraction of ether transfer transac-
tions that modify the account fingerprint (43, 7%). For the
sake of robustness of the measurements, we chose finger-
prints with the last eight digits. As seen in Figure 24, ac-
count balances are mostly integer values. However, the rest
of the fingerprint values modulo 100,000,000 are moderately
uniformly distributed. The entropy of the account balance
fingerprints is 4.01 with a 6.44 entropy gain. These results
suggest that account balances might be easily fingerprinted.
In the sequel, we estimate the average fingerprint survival
probability.

Let F denote the event that a fingerprint of an address
remains unchanged. To approximate the event probability
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Figure 22: Entropy gain of our best deanonymization methods for the three different ground truth sets described in
Section 7.3.
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Figure 23: Change of average rank in time, cumulated from the beginning of our data, for the 0.1 ETH Tornado mixer
by using our best deanonymization methods. Results are showed separately for the three ground truth sets described in
Section 7.3.

Tx Addresses Txs Txs Avg. Sent Fingerprint
Cutoff Fingerprinting Txs/Address survival prob.
50 56,399 120,461 61,393 2.14 21.83%
100 56,973 161,427 73,340 2.83 17.97%
500 57,951 384,369 129,431 19.48 6.56%
All 58,367 1,137,558 352,042 19.49 0.073%

Table 3: Balance fingerprinting statistics for Ethereum users. In each cutoff, we only consider addresses that did not
issue more transactions than the cutoff value. We observe that vast majority of fingerprinting transactions were sent by
addresses that send numerous transactions. Fingerprinting an address with few sent transactions is obviously easier than
an address with many issued transactions. Fingerprint survival probabilities were calculated as in Equation 3.
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Figure 24: Ether account balance fingerprints. Many
Ethereum accounts have an integer account balance. This
allows an attacker to fingerprint the last 9 digits of an ac-
count balance. Account balance fingerprints distribution has
a 4.01 bit entropy and 6.44 bit entropy gain.
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Figure 25: Danaan-gift attack in confidential transaction
layers. An adversary can fingerprint (2) an unsuspecting
user’s account balance after she deposited assets (1) in a
confidential asset pool, e.g. AZTEC. Adversary can track
the user when she leaves (3) the confidential pool.

Pr(F ), let p denote the probability that a transaction mod-
ified the fingerprint and let x denote the number of trans-
actions sent or received by the given address in our dataset.
By assuming that each transaction is independent from all
others, the fingerprint survival probability of this address is
(1− p)x.

We observe that the distribution of the number x of trans-
actions sent and received by an address follow power-law
distribution ∼ x−k with k = 1.91. The average survival
probability of all addresses can hence be approximated by
the following integral, where we group by x, the number of
transactions of an address:

Pr(F ) =

∫ ∞
1

x−k(1− p)xdx, (3)

which can be computed in a closed formula. The numerical
values are summarized in Table 3.

As the number of transactions sent follow a power-law
distribution, the average value is skewed by the tail of the
distribution. Therefore it makes sense to calculate the av-
erage survival probability for several cutoffs of the tail, see
Table 3. Namely, in each cutoff we only consider addresses
in our data set that sent less number of transactions than
the cutoff value. One can observe how fingerprint survival
probability increases among users with a small number of
transactions. For example, an adversary could successfully
fingerprint 21.83% of the addresses that send not more than
50 transactions. This result is comparable to the 16.6% fin-
gerprint survival probability observed in Zcash [7].

8.1 Danaan-gift attack for confidential
transaction overlays

A future application of Danaan-gift attacks in Ethereum
might be linking confidential transactions in privacy-
enhancing overlays, like the AZTEC protocol [66].

In a confidential transaction overlay, users can convert
public amounts to confidential notes. Subsequently, they
can send confidential notes to intended recipients by split-
ting and or joining their confidential notes. The amount
of confidential notes is hidden, yet publicly verifiable due
to range proofs. Users can also convert their confidential
tokens back to public amounts.

In this scenario, an adversary can fingerprint unsuspecting
users inside a confidential transaction overlay, see Figure 25.
When a user deposits a public amount to the confidential as-
set pool, an adversary could fingerprint her account balance
by sending her a confidential transaction with a fingerprint-
ing amount. Subsequently, the user might issue several con-
fidential transactions in this privacy-enhanced overlay. If
the victim’s balance fingerprint survives during the course
of issued confidential transactions, the adversary can iden-
tify the user withdrawing funds from the confidential asset
pool by inspecting the fingerprint on the withdrawn amount.
Thus the fingerprinting adversary can assess how much the
unsuspecting user paid in the confidential asset pool.

9 Future directions

We expect that in the near future more potent and powerful
deanonymization tools and techniques will emerge. In this
work, we solely applied on-chain data for deanonymizing
Ethereum users. Subsequent tools will likely use a combina-
tion of on-chain and off-chain data. Therefore we deem the
following directions would be extremely valuable for future
work for the broader cryptocurrency research community.

9.1 Further quasi-identifiers

In this work we identified several quasi-identifiers of
Ethereum accounts, such as time-of-day activity, gas price
profile and position in the Ethereum transaction graph.
However, we forecast that many more quasi-identifiers can
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be used for further profiling and deanonymizing Ethereum
users. One such potential quasi-identifier is wallet finger-
prints. One could establish which wallet a certain user em-
ploys by assessing how transaction gas prices are calculated.
Different wallet softwares use different methods to compute
suggested gas prices [64].

9.2 Network-level privacy

Assessing Ethereum’s privacy provisions entirely can only be
established if one considers the full life-cycle of a transaction.
Specifically, one also needs to understand how much privacy
is lost when users interact with full nodes or wallet providers.

As the history of Bitcoin and other cryptocurrencies
showed, full nodes and wallet providers can deanonymize
regular users and light clients already on the network
layer [6, 8, 19, 20, 59, 37]. An attacker could establish many
well-connected nodes in the peer-to-peer layer to log the
timing information of transactions. Due to the symmetry of
broadcast, the adversary could infer the origin of the trans-
action [20, 6]. Yet, there are solely measurement studies
on Ethereum’s P2P network structure [29, 21]. Therefore,
it would be worthwhile to conduct a study on Ethereum’s
P2P network, but from a privacy point of view. Fortunately,
several proposals had been made to enhance network-level
privacy for cryptocurrencies [9, 18].

Additionally, in Ethereum, special nodes called relayers
gain more and more popularity. Relayers allow senders to
issue feeless transactions, i.e. users can send transactions
from addresses that do not hold ether yet. Such relayer
nodes can also easily deanonymize their users. This is es-
pecially problematic in case of non-custodial mixers, like
Tornado Cash.

9.3 Wallet and Browser Privacy

It has been shown how online trackers and cookies can
aid the deanonymization of cryptocurrency users even when
their coins were mixed through the use of a mixer [22]. Many
users of the Ethereum blockchain make use of a tool called
MetaMask, a browser extension available in most desktop
browsers. As such, for future research, it would be fasci-
nating to analyze how the use of this extension affects the
privacy of Ethereum users, even with the use of mixers. It
may be possible to use the techniques presented in [22] to
deanonymize users. Furthermore, as many Ethereum users
also make use of mobile wallets, it may be useful to inves-
tigate how mobile phones can affect cryptocurrency users’
privacy and assess the privacy guarantees of these mobile
wallet providers [7].

9.4 Privacy of UTXO-based cryptocurren-
cies

We note that the deanonymizing power of quasi-identifiers
(e.g. temporal activity, wallet fingerprints etc.) is also ap-
plicable to UTXO-based cryptocurrencies. Even though in

that case deanonymization is slightly more involved as one
need to apply our techniques not to individual addresses
but rather to clusters of UTXOs. We do foresee that more
potent agencies can and will engage in such deanonymiza-
tion campaigns. We believe that in practice, due to the
aforementioned quasi-identifiers, also Bitcoin non-custodial
mixers provide drastically less privacy and fungibility than
what currently the community expects from those privacy-
enhancing technologies.

10 Conclusion

In this paper, we studied how graph representation learn-
ing, time-of-day activity and gas price based profiling can
be used to link Ethereum addresses owned by the same user.
The Ethereum Name Service (ENS) relations in our data set
provided ground truth information to quantitatively com-
pare and analyze the performance of these quasi-identifiers.
Our results showed that recent node embedding methods
had superior performance compared to user activity based
profiling techniques.

Recently, several privacy-enhancing overlays have been
deployed on Ethereum, such as Tornado Cash mixers. By
our measurements, their decreased usability and immature
user behavior prevent them from reaching their highest at-
tainable privacy guarantees. Evaluation on heuristically
linked mixing participants showed that profiling techniques,
especially novel node embedding algorithms, can signifi-
cantly reduce the anonymity set sizes of the mixing parties.

Finally, we investigated an active attack scenario for
Ethereum confidential transactions by repurposing the
Danaan-gift attack, originally introduced for Zcash. The es-
timated success probability of the attack demonstrates that
users should be concerned and warned about these attacks
against transaction confidentiality.

We release the collected data as well as our source code
to facilitate further research8.
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A Ethereum basics

Ethereum is a cryptocurrency built on top of a
blockchain [67]. There are two types of accounts in
Ethereum: externally owned accounts (EOAs) and contract
accounts, also known as smart contracts. The global state
of the system consists of the state of all different accounts.
EOAs are controlled by an asymmetric cryptographic key
pair, while smart contracts are controlled by their code
stored in persistent, immutable storage. EOAs can issue
transactions, which might alter the global state. Transac-
tions can either create a new contract account or call exist-
ing accounts. Accounts have balances in ether, the native
currency of Ethereum, and are denominated in wei where
1ETH = 1018wei.

Calls to EOAs can transfer Ether to the callee, while con-
tract calls execute the code associated with the smart con-
tract. The contract execution might alter the storage of
the account, moreover can call to other accounts - these are
called internal transactions. Contract code is executed in
the Ethereum Virtual Machine (EVM).

A.1 Gas mechanism

A crucial aspect of the EVM is the gas mechanism. To ev-
ery EVM opcode, there is a gas amount assigned, which is
deemed to price the computational complexity of that op-
code. For instance, adding two elements on top of the stack
consumes only 3 gas, but storing a non-zero stack element
in the persistent storage burns 20,000 gas. The base gas
fee for every transaction is 21,000 gas, which is not paid for
internal transactions. Therefore, whenever one executes a
smart contract code in the EVM, the execution consumes a
certain amount of gas. At each transaction, the sender needs
to define the maximum number of gas, called gas limit, they
allow their transaction to consume. Usually, due to the dy-
namic nature of the state, one does not know statically how
much gas would her transaction burn. If a transaction does
not consume all the gas assigned to it, then surplus gas is
refunded to the caller, however, if a transaction runs out of
gas, then all state changes are reverted and assigned gas is
taken from the caller.

As of now, gas can only be purchased by Ethereum’s na-
tive currency, ether, at a dynamically changing price, called
gas price. Miners are naturally incentivised to insert trans-
actions with higher gas prices into their blocks to increase
their collected transaction fees.
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